Role of the Environment & Healthcare-Associated Infection (HCAI)

Hilary Humphreys Department of Clinical Microbiology

Department of Clinical Microbiology The Royal College of Surgeons in Ireland (RCSI) & Beaumont Hospital, Dublin, Ireland

Safe Patient Care course, HPSC & RCSI 9th September 2019

Declaration-1

The views expressed are in a personal but professional capacity & do not necessarily reflect those of the RCSI or Beaumont Hospital.

I have received recent research funds from Pfizer & Astellas. I have also recently received professional fees from Pfizer.

Outline

- Background & Introduction
- Examples for surfaces
 Bacteria
 Fungi & viruses
- Air & water
- Conclusions & Reflections

Background & Introduction

	e Environment es, Air & Water
Immediate area	ward, bed
Instruments	surgical, endoscopes
General	cleanliness building work

Why clean or decontaminate?

- Aesthetically pleasing
- Reassures patients & the public
- Contributes to preventing HCAI

Q. What is the evidence that the environment directly impinges on HCAI rates?

A. There is little incontrovertible evidence. Circumstantial evidence, e.g. outbreaks, observational studies & common sense (biological plausibility) tell us it is important, but it is difficult to quantify

Criteria for Considering if Contaminated Surfaces Cause HCAI

- 1. Temporal & geographical links
- 2. Pathogen survives on surfaces
- 3. Transmission from previous occupant of room
- 4. Similar clone from patient & surface
- 5. Enhanced decontamination reduces infections

Survival of Pathog	jens on Surfaces
Pathogen	Survival
Acinetobacter spp.	3 days to 5 months
Clostridium difficile (spores)	5 months
E. coli	1.5h - 16 months
Enterococcus spp.	5 days to 4 months
S. aureus	7 days – 7 months
C. albicans	1 – 120 days
Adenovirus	7 days – 3 months
Vary according to pathogen,	dry/wet surface, +/- protein
	BMC Infect Dis 2006; 6: 130

What is the overall burden of multi-drug resistant organisms (MDRO)?

- Sponge wipes over > 1,000 cm, high touch noncritical surface
- 9 acute hospitals & 2 long term care facilities

Results

- Door handles > telephone > remote call button for bacteria
- Over bed table > +ve for MDRO on 54% of samples
- Often MDRO discordant with patient in single room

Infect Control Hosp Epidemiol 2016; 37: 1426-1432

- 92/939 (10%) patients +ve for MRSA in extensive screening study
- 65/1,252 (5%) environmental sites positive adjacent to MRSA patients
- MRSA isolated from environment of MRSA-ve patients
- Sites +ve included
 mattresses, 14%
 >air, 8%

Eur J Clin Microbiol Infect Dis 2012, 3151-3161

Human Parainfluenza & Norovirus in Offices

Table 3 Average concentrations of HPIVs and NoVs RNA copies/100 $\rm cm^2$ in positive swab samples (mean values and standard deviations, SD) regarding to object category

Surface	Virus	Virus		
	HPIVs (HPI	V1, HPIV3)	1, HPIV3) NoV GII	
	Mean value SD Mean value	SD		
Keyboard	3.36×10^2	2.37×10^2	N.D.	N.D.
Computer mouse	5.90×10^{1}	2.20×10^1	N.D.	N.D.
Telephone	1.66×10^{3}	1.09×10^{3}	N.D.	N.D.
Desktop	4.85×10^{2}	4.65×10^{2}	N.D.	N.D.
Door handle	N.D.	N.D.	5.06×10^{1}	3.97×10^{1}
Light switch	N.D.	N.D.	1.40×10^{2}	8.09×10^{1}
N.D. not detected		Food Envi	ronment Vir 2018;	10: 133-140

Air

- Does it matter in normal circumstances
- Isolation room issues
- Operating theatres or rooms

Water

- Aspects of Pseudomonas aeruginosa
- Legionella
- Carbapenemase-producing Enterobacterales (CPE)

Air-General

Air, ubiquitous, all around us, essential for life

- Q. Does it normally matter in terms of temperature, humidity, airflow, etc.?
- A. Most of the time no, but staff & patients should be comfortable

Operating Theatres (Rooms)

Role of Ventilation

- Removal of toxic gases/odours
- Comfort of surgical team
- Patient normothermia
- Prevention of infection

Airborne contamination of surgical wound by:

- Directly on to wound
- Via exposed/contaminated instruments

Isolation Rooms

A. Standard room air pressures or none, e.g. contact precautions for MRSA

- B. Positive room air pressure (protects the patient), e.g. neutropenic patient
- C. Negative room air pressure (protects other patients), e.g. airborne transmission such as for TB
- D. Negative & additional barriers, e.g. Ebola

Get the Simple Things Right

- Solid ceilings
- Sealed windows that can't be opened
- Appropriately hung door (open-in) with door closure
- 19 air changes per hour (ACH)
- Ensuite negative to patient's room

Health Building Note 04-01 2013

What do you check & how? Beaumont Hospital Infection Prevention & Control Team

No	Visual check item. Record observation Don appropriate PPE before entering the AIIR if necessary			
1	-	Outside the ante room: 1. Ensure all doors are in the closed position 2. Look at the magnethelic pressure sensor which is outside the ante room entrance b. Look at the magnethelic pressure sensor which is outside the ante room entrance b. Is the display reading more than 5pa?		
2		Isodia the stateroom: 1. Statis in the state-room 2. Crose all doors is the flap over the patient's bedroom door partially open?		
3		En-suite bathroom (if applicable) 1. Close the bathroom door behind you • is the extract fan working? (Listen)		
4	,	Obtaile the patient room (If applicable): 1. Creat the obtains cleanly into patient room for more than 5 minutes* 1. Creat the obtains cleanly into patient room for more than 5 minutes* 2. After the 5 minutes have passed, look at the sensor* located on top of the double doors 1. Is the light green?		

Waterborne Infections

Abroad

- Typhoid fever
- Cholera

Community

Cryptosporodiosis

Hospital

- Legionella
- Pseudomonas
- Non-tuberculosis mycobacteria
- CPE (sinks & drains)

Potential Risk Areas/ Issues

Decorative Water Features Ice-making machines Endoscopy units

Haemodialysis Dental chair units Bathing pools & hydrotherapy

Augmented care units (e.g. ICUs)

Legionella species

L. pneumophilia sero-group 1, is the most virulent

May be present in domestic & hospital water

Spread by aerosols, e.g. when first use an occasionally unused shower

Risk to patients & staff

Legionella – Risk Factors

Temperature of water, 25°C - 42°C

Water stagnation (dead legs)

Scale & sediment (tanks)

Free-living amoeba

Control of Nosocomial Legionellosis Management & good systems in place Estate maintenance of water systems, e.g. removal of 'dead legs' or unused outlets Water testing

Routine, e.g. flushing Additional, e.g. chlorine dioxide, copper/silver

Pseudomonas aeruginosa

- Found in soil, water & gastrointestinal tract
- Survives in moist environments, e.g. fluid containers, equipment, sinks, etc.
- Causes
 - >Ventilator-associated pneumonia
 - Bloodstream infection
 - Urinary tract infection
- Present in splashes, e.g. water should not flow directly from tap to drain hole

Who does what where? Health Protection Scotland, 2017			
	Critical Control Point	Lead Responsibility	
1	The hospital water delivery system	Estates	
2	Flushing taps to reduce the risk of pipework system contamination	Senior charge nurse	
<u>3</u>	Preventing direct water usage colonising/ infecting vulnerable patients	Senior charge nurse	
<u>4</u>	Preventing indirect water usage from colonising/infecting patients	Senior charge nurse	
<u>5</u>	Preparedness for clinical incidents and earliest possible detection of any clinical incidents	IPCTs	
<u>6</u>	Prompt investigation and control measure application for any clinical incidents	IPCTs	

Report of Case Finding Investigation to identify Mycobacterium chimaera Infections potentially associated with Heater-Cooler Units used during Cardiothoracic Surgery in Ireland HPSC, 2016

Conclusions & Future Directions

Environmental Sampling

- Not routinely indicated, except for water (e.g. for legionella, endoscope water)
- Occasionally indicated for outbreak management, e.g. is there a source
- Research studies ongoing to determine is the environment the 'chicken or the egg'
- Discuss first with infection prevention & control team & microbiology department
- Think beforehand what you will do with the results.....especially if unexpected

Conclusions (Surfaces)

- 1. A wide variety of microbes are detectable on surfaces
- 2. Most have adapted but may be antimicrobial resistant
- Cross-transmission under-estimated & outbreaks are the tip of the iceberg
- Routine cleaning is often inadequate

Conclusions (Air & Water)

- 1. Most patients exposed to air & water are not at risk most of the time
- 2. Isolation room design & maintenance are important for all
- 3. Ventilation & physical specifications are more important than sampling
- Good design & effective estates department help prevent waterborne infections

Some Suggested Reading

- Kramer et al. How long do nosocomial pathogens persist on inanimate surfaces? A systematic Review. BMC Infect Dis 2006; 6.130 doi: 10.1186/1471-2334-6-130
- 2. Otter JA, et al. The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infect Control Hospital Epidemiol 2011; 32: 687-699
- Dancer SJ. Controlling hospital-acquired infection; focus on the role of the environment and new technologies for decontamination. *Clin Micro Rev* 2014; 27: 665-90
- Carling PC, Wastewater drains: Epidemiology and interventions in 23 carbapenem-resistant organism outbreaks. Infect Control Hosp Epidemiol 2018; 39: 972-979

Acknowledgements

- 1. Peter Hoffman, Public Health, England
- 2. Caoimhe Finn, Infection Prevention & Control Nurse (AODN), Beaumont Hospital
- 3. Maireád Skally, Surveillance Scientist
- 4. Peter O'Donovan & Philip Shaw, Estates, Beaumont Hospital